Abstract

An extensive series of radioligands has been developed for imaging central nicotinic acetylcholine receptors (nAChRs) with PET. Two halogeno-derivatives of A-85380 are being used in humans. Nevertheless, these derivatives still display too-slow brain kinetics and low signal-to-noise ratio. A novel nAChR radioligand, 5-(6-fluorohexyn-1-yl)-3-[2(S)-2-azetidinylmethoxy]pyridine (ZW-104), was characterized in vitro using competition binding assays (nAChR subtypes heterologously expressed in HEK 293 cells and in native alpha4beta2 nAChRs from rat brain). (18)F-ZW-104 was prepared as follows: no-carrier-added nucleophilic aliphatic radiofluorination of the corresponding N-Boc-protected tosyloxy derivative 5-(6-tosyloxyhexyn-1-yl)-3-[2(S)-(N-(tert-butoxycarbonyl))-2-azetidinylmethoxy] pyridine) with the activated 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8,8,8]hexacosane (K-(18)F-F-Kryptofix 222 [K(222)] complex), followed by quantitative trifluoroacetic acid-induced removal of the N-Boc protective group. (18)F-ZW-104 was then studied in baboons using PET. ZW-104 showed high binding affinities for rat alpha4beta2 nAChRs (K(i), 0.2 nM) and other subtypes containing the beta2 subunit but much lower affinities for rat alpha3beta4 nAChRs (K(i), 5,500 nM) and other subtypes containing the beta4 subunit. The regional radioactivity distribution in the baboon brain matched that of the alpha4beta2 nAChR, which was similar to that of 2-(18)F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-(18)F-A-85380), a radioligand used in humans. Comparison between (18)F-ZW-104 and 2-(18)F-A-85380 demonstrated better in vivo binding properties of the new radioligand: a substantially greater amount of radioactivity accumulated in the brain, and the occurrence of peak uptake in the thalamus was earlier than that of 2-(18)F-A-85380 and was followed by washout. Distribution volume values in different brain regions were 2-fold higher for (18)F-ZW-104 than for 2-(18)F-A-85380. Displacement by nicotine or unlabeled ZW-104 demonstrated a lower nonspecific binding than that of 2-F-A-85380. These results suggest that (18)F-ZW-104 is a promising PET radioligand for studying nAChRs containing the beta2 subunits in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.