Abstract

BackgroundThe role of image-derived biomarkers in recurrent oligometastatic Prostate Cancer (PCa) is unexplored. This paper aimed to evaluate [18F]FMCH PET/CT radiomic analysis in patients with recurrent PCa after primary radical therapy. Specifically, we tested intra-patient lesions similarity in oligometastatic and plurimetastatic PCa, comparing the two most used definitions of oligometastatic disease.MethodsPCa patients eligible for [18F]FMCH PET/CT presenting biochemical failure after first-line curative treatments were invited to participate in this prospective observational trial. PET/CT images of 92 patients were visually and quantitatively analyzed. Each patient was classified as oligometastatic or plurimetastatic according to the total number of detected lesions (up to 3 and up to 5 or > 3 and > 5, respectively). Univariate and intra-patient lesions' similarity analysis were performed.Results[18F]FMCH PET/CT identified 370 lesions, anatomically classified as regional lymph nodes and distant metastases. Thirty-eight and 54 patients were designed oligometastatic and plurimetastatic, respectively, using a 3-lesion threshold. The number of oligometastic scaled up to 60 patients (thus 32 plurimetastatic patients) with a 5-lesion threshold. Similarity analysis showed high lesions' heterogeneity. Grouping patients according to the number of metastases, patients with oligometastatic PCa defined with a 5-lesion threshold presented lesions heterogeneity comparable to plurimetastic patients. Lesions within patients having a limited tumor burden as defined by three lesions were characterized by less heterogeneity.ConclusionsWe found a comparable heterogeneity between patients with up to five lesions and plurimetastic patients, while patients with up to three lesions were less heterogeneous than plurimetastatic patients, featuring different cells phenotypes in the two groups. Our results supported the use of a 3-lesion threshold to define oligometastatic PCa.

Highlights

  • 18F-fluoro-methyl-choline ­([18F]FMCH) or 11C-choline positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality to detect recurrence in Prostate Cancer (PCa) patients with biochemical failure after definitive treatment

  • Study design and patient selection All PCa patients eligible for ­[18F]FMCH PET/CT presenting with biochemical failure after first-line curative treatments were invited to participate in this observational trial

  • This preliminary analysis consisted of 92 patients with a positive ­[18F]FMCH PET/CT prospectively enrolled between January 2011 and February 2018 in the above-mentioned trial

Read more

Summary

Introduction

18F-fluoro-methyl-choline ­([18F]FMCH) or 11C-choline positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality to detect recurrence in Prostate Cancer (PCa) patients with biochemical failure after definitive treatment. Analysis of surface or volume, traditionally described by texture, has evolved in a discipline (in between image analysis and statistical modeling) aiming at describing tumor lesion heterogeneity through a multitude of quantitative indices (i.e., radiomic features). Molecular imaging is largely used to define tumor burden and successfully select oligometastatic patients eligible for local treatment [17, 18], the role of image-derived biomarkers in oligometastatic PCa remains to be determined. This paper aimed to evaluate ­[18F]FMCH PET/CT radiomic analysis in patients with recurrent PCa after primary radical therapy. We tested intra-patient lesions similarity in oligometastatic and plurimetastatic PCa, comparing the two most used definitions of oligometastatic disease. Grouping patients according to the number of metastases, patients with oligometastatic PCa defined with a 5-lesion threshold presented lesions heterogeneity comparable to plurimetastic patients. Lesions within patients having a limited tumor burden as defined by three lesions were characterized by less heterogeneity

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call