Abstract

BackgroundThis study investigated 18F-fluorodeoxyglucose (18F-FDG) uptake at knee joints for determination of metabolic alteration in association with the advance of age and joint degeneration such as osteoarthritis (OA).MethodsA total of 166 knees from 83 healthy persons who presented for routine health examination and positron emission tomography-computed tomography (PET/CT) were enrolled in this study. History of knee OA and joint symptoms and signs were reviewed. The maximum standardized uptake values (SUVmax) of cartilage and mean SUV (SUVmean) between the epiphyseal plates of femur and tibia were evaluated at knee joints. Assessment of radiological bony changes was performed using the Kallgren-Lawrence (K/L) grading system with reconstructed CT images of the knee. The joint symptoms and signs were counted and used for diagnosis of clinical and radiological OA of the knee.ResultsThe SUVmean of the knee joints showed a remarkable increase with aging in females (r = 0.503, p < 0.01). Remarkable changes of SUVmean were observed with history of OA (p < 0.01). The SUVmean of joint and the intra-articular SUVmax showed higher values in clinical and radiological OA than in normal joints (p < 0.01). Joint-SUVmean showed significant correlation with OA severity graded according to K/L score (p < 0.05). The intra-articular SUVmax showed a significant increase in symptomatic joints, indicating OA in correlation with the joint-SUVmean (p = 0.01).ConclusionsThe increasing 18F-FDG uptakes of knee joints showed agreement with aging in females and clinical and radiological knee OA, indicating that the metabolic alterations were consistent with diagnosis and demographic aspect of OA as a surrogate marker for degeneration of the knee in association with aging.

Highlights

  • This study investigated 18F-fluorodeoxyglucose (18F-FDG) uptake at knee joints for determination of metabolic alteration in association with the advance of age and joint degeneration such as osteoarthritis (OA)

  • 18F-FDG uptake and radiological OA of knee joints Joint mean and intra-articular Maximum standardized uptake values (SUVmax) on PET scan were evaluated according to K/L grade (Figure 1B)

  • Knees with a higher K/L grade showed higher joint-Mean standardized uptake values (SUVs) (SUVmean); a significant increase of joint-SUVmean was observed among the groups (p < 0.05), but not for intra-articular SUVmax (Table 1)

Read more

Summary

Introduction

This study investigated 18F-fluorodeoxyglucose (18F-FDG) uptake at knee joints for determination of metabolic alteration in association with the advance of age and joint degeneration such as osteoarthritis (OA). OA is usually characterized by painful joints, which may accompany subchondral sclerosis, joint space narrowing, and osteophytosis in association with cartilage degeneration. Aging is the most important risk factor for primary OA not caused by injury or disease, and almost 80% of people older than 75 years of age present with OA, one of the most commonly occurring diseases in the elderly [1] It Regarding the pathogenesis of OA, it is generally accepted that if physical stress to a joint is sufficient to denature articular cartilage matrix, synthesis of proteoglycans and collagen decreases, making the joint vulnerable to stress [2]. Metabolic alterations in cartilage may be associated with vulnerability of the joint to stress in primary OA, and certain cellular processes that occur during aging may contribute to development of OA [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call