Abstract

The purpose of this study is to construct models for predicting platinum resistance in high-grade serous ovarian cancer (HGSOC) derived from quantitative spatial heterogeneity indicators obtained from 18F-FDG PET/CT images. A retrospective study was conducted on patients diagnosed with HGSOC. Quantitative indicators of spatial heterogeneity were generated using conventional features and Haralick texture features from both CT and PET images. Three groups of predictive models (conventional, heterogeneity, and integrated) were built. Each group's optimal model was the one with the highest area under curve (AUC). Postoperative immunohistochemical staining for Ki-67 and p53 was conducted. The correlation between the heterogeneity indicators and scores for Ki-67 and p53 was assessed by Spearman's correlation coefficient (ρ). A total of 286 patients (54.6 ± 9.3 years) were enrolled. And 107 spatial heterogeneity indicators were extracted. The optimal models for each group were obtained using the Gradient Boosting Machine (GBM) algorithm. There was an AUC of 0.790 (95% CI: 0.696, 0.885) in the conventional model for the validation set, and an AUC of 0.904 (95% CI: 0.842, 0.966) in the heterogeneity model for the validation set. The integrated model achieved the highest predictive performance, with an AUC value of 0.928 (95% CI: 0.872, 0.984) for the validation set. Spearman's correlation showed that HU_Kurtosis had the strongest correlation with p53 scores with ρ = 0.718, while cluster site entropy had the strongest correlation with Ki-67 scores with ρ = 0.753. Adding quantitative spatial heterogeneity indicators derived from PET/CT images can improve the prediction of platinum resistance in patients with HGSOC. Spatial heterogeneity indicators were related to Ki-67 and p53 scores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.