Abstract
With the emergence of PET/CT using 18F-FDG, molecular imaging has become the reference for lymphoma lesion detection, tumor staging, and response assessment. According to the response in some lymphoma subtypes it has also been utilized for prognostication of disease. Although 18F-FDG has proved useful in the management of patients with lymphoma, the specificity of 18F-FDG uptake has been critically questioned, and is not without flaws. Its dependence on glucose metabolism, which may indiscriminately increase in benign conditions, can affect the 18F-FDG uptake in tumors and may explain the causes of false-positive imaging data. Considering these drawbacks, 18F-fludarabine, an adenine nucleoside analog, was developed as a novel PET imaging probe. An efficient and fully automated radiosynthesis has been implemented and, subsequently preclinical studies in xenograft murine models of hematological maligancies (follicular lymphoma, CNS lymphoma, multiple myeloma) were conducted with this novel PET probe in parallel with 18F-FDG. The results demonstrated several crucial points: tumor-specific targeting, weaker uptake in inflammatory processes, stronger correlation between quantitative values extracted from [18]F-fludarabine and histology when compared to 18F-FDG-PET, robustness during immunotherapy with rituximab, divergent responses between CNS lymphoma and glioblastoma (GBM). All these favorable findings permitted to establish a “first in man” study where 10 patients were enrolled. In DLBCL patients, increased uptake was observed in sites considered abnormal by CT and [18F]FDG; in two patients discrepancies were observed in comparison with 18F-FDG. In CLL patients, the uptake coincided with sites expected to be involved and displayed a significant uptake in hematopoietic bone marrow. No uptake was observed, whatever the disease group, in the cardiac muscle and brain. Moreover, its mean effective dose was below the effective dose reported for 18F-FDG. These preclinical and clinical findings revealed a marked specificity of 18F-fludarabine for lymphoma tissues. Furthermore, it might well be a robust tool for correctly quantifying the disease, in the presence of confounding inflammatory processes, thus avoiding false-positive results, and an innovative approach for imaging hematological malignancies.
Highlights
Cancer diagnosis has significantly been improved over the past decades, due to novel imaging agents that enable earlier detection
The higher accuracy of PET/CT using 18F-FDG in baseline lymphoma staging compared with traditional anatomical imaging techniques such as CT or MRI has profoundly changed the management of patients
To estimate the maximum dosage of 18F-fludarabine that could be safely administrated to patients, radiation dose was calculated in major organs; the results revealed that the urinary bladder wall, considered as a limiting organ, received the highest dose
Summary
Cancer diagnosis has significantly been improved over the past decades, due to novel imaging agents that enable earlier detection. The higher accuracy of PET/CT using 18F-FDG in baseline lymphoma staging compared with traditional anatomical imaging techniques such as CT or MRI has profoundly changed the management of patients. Based on the characteristics of 18F-FDG-PET, novel imaging probe must be developed to fulfill the need of a more specific radiopharmaceutical for a better tumor delineation and a more precise evaluation of the response to therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.