Abstract
The diagnostic value of imaging Aβ plaques in Alzheimer's disease (AD) has accelerated the development of fluorine-18 labeled radiotracers with a longer half-life for easier translation to clinical use. We have developed [18F]flotaza, which shows high binding to Aβ plaques in postmortem human AD brain slices with low white matter binding. We report the binding of [18F]flotaza in postmortem AD hippocampus compared to cognitively normal (CN) brains and the evaluation of [18F]flotaza in transgenic 5xFAD mice expressing Aβ plaques. [18F]Flotaza binding was assessed in well-characterized human postmortem brain tissue sections consisting of HP CA1-subiculum (HP CA1-SUB) regions in AD (n = 28; 13 male and 15 female) and CN subjects (n = 32; 16 male and 16 female). Adjacent slices were immunostained with anti-Aβ and analyzed using QuPath. In vitro and in vivo [18F]flotaza PET/CT studies were carried out in 5xFAD mice. Post-mortem human brain slices from all AD subjects were positively IHC stained with anti-Aβ. High [18F]flotaza binding was measured in the HP CA1-SUB grey matter (GM) regions compared to white matter (WM) of AD subjects with GM/WM > 100 in some subjects. The majority of CN subjects had no decipherable binding. Male AD exhibited greater WM than AD females (AD WM♂/WM♀ > 5; p < 0.001) but no difference amongst CN WM. In vitro studies in 5xFAD mice brain slices exhibited high binding [18F]flotaza ratios (>50 versus cerebellum) in the cortex, HP, and thalamus. In vivo, PET [18F]flotaza exhibited binding to Aβ plaques in 5xFAD mice with SUVR~1.4. [18F]Flotaza is a new Aβ plaque PET imaging agent that exhibited high binding to Aβ plaques in postmortem human AD. Along with the promising results in 5xFAD mice, the translation of [18F]flotaza to human PET studies may be worthwhile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.