Abstract

This study was designed to develop and validate a machine learning-based, multimodality fusion (MMF) model using 18F-fluorodeoxyglucose (FDG) PET/CT radiomics and kernelled support tensor machine (KSTM), integrated with clinical factors and nuclear medicine experts' diagnoses to individually predict peritoneal metastasis (PM) in advanced gastric cancer (AGC). A total of 167 patients receiving preoperative PET/CT and subsequent surgery were included between November 2006 and September 2020 and were divided into a training and testing cohort. The PM status was confirmed via laparoscopic exploration and postoperative pathology. The PET/CT signatures were constructed by classic radiomic, handcrafted-feature-based model and KSTM self-learning-based model. The clinical nomogram was constructed by independent risk factors for PM. Lastly, the PET/CT signatures, clinical nomogram, and experts' diagnoses were fused using evidential reasoning to establish the MMF model. The MMF model showed excellent performance in both cohorts (area under the curve [AUC] 94.16% and 90.84% in training and testing), and demonstrated better prediction accuracy than clinical nomogram or experts' diagnoses (net reclassification improvement p < 0.05). The MMF model also had satisfactory generalization ability, even in mucinous adenocarcinoma and signet ring cell carcinoma which have poor uptake of 18F-FDG (AUC 97.98% and 89.71% in training and testing). The 18F-FDG PET/CT radiomics-based MMF model may have significant clinical implications in predicting PM in AGC, revealing that it is necessary to combine the information from different modalities for comprehensive prediction of PM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.