Abstract

BackgroundMicrovascular invasion (MVI) is a critical risk factor for early recurrence of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The aim of this study was to explore the contribution of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiomic features for the preoperative prediction of HCC and ICC classification and MVI.MethodsIn this retrospective study, 127 (HCC: ICC =76:51) patients with suspected MVI accompanied by either HCC or ICC were included (In HCC group, MVI positive: negative =46:30 in ICC group, MVI positive: negative =31:20). Results-driven feature engineering workflow was used to select the most predictive feature combinations. The prediction model was based on supervised machine learning classifier. Ten-fold cross validation on training cohort and independent test cohort were constructed to ensure stability and generalization ability of models.ResultsFor HCC and ICC classification, radiomics predictors composed of two PET and one CT feature achieved area under the curve (AUC) of 0.86 (accuracy, sensitivity, specificity was 0.82, 0.78, 0.88, respectively) on test cohort. For MVI prediction, in HCC group, our MVI prediction model achieved AUC of 0.88 (accuracy, sensitivity, specificity was 0.78, 0.88, 0.60 respectively) with three PET features associated with tumor stage on test cohort. In ICC group, the phenotype composed of two PET features and carbohydrate antigen 19-9 (CA19-9) achieved AUC of 0.90 (accuracy, sensitivity, specificity was 0.77, 0.75, 0.80, respectively).Conclusions18F-FDG PET/CT radiomic features integrating clinical factors have potential in HCC and ICC classification and MVI prediction, while PET features have dominant predictive power in model performance. The prediction model has value in providing a non-invasive biomarker for an earlier indication and comprehensive quantification of primary liver cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.