Abstract

ObjectivesTo decipher the correlations between PET and DCE kinetic parameters in non-small-cell lung cancer (NSCLC), by using voxel-wise analysis of dynamic simultaneous [18F]FDG PET-MRI.Material and methodsFourteen treatment-naïve patients with biopsy-proven NSCLC prospectively underwent a 1-h dynamic [18F]FDG thoracic PET-MRI scan including DCE. The PET and DCE data were normalized to their corresponding T1-weighted MR morphological space, and tumors were masked semi-automatically. Voxel-wise parametric maps of PET and DCE kinetic parameters were computed by fitting the dynamic PET and DCE tumor data to the Sokoloff and Extended Tofts models respectively, by using in-house developed procedures. Curve-fitting errors were assessed by computing the relative root mean square error (rRMSE) of the estimated PET and DCE signals at the voxel level. For each tumor, Spearman correlation coefficients (rs) between all the pairs of PET and DCE kinetic parameters were estimated on a voxel-wise basis, along with their respective bootstrapped 95% confidence intervals (n = 1000 iterations).ResultsCurve-fitting metrics provided fit errors under 20% for almost 90% of the PET voxels (median rRMSE = 10.3, interquartile ranges IQR = 8.1; 14.3), whereas 73.3% of the DCE voxels showed fit errors under 45% (median rRMSE = 31.8%, IQR = 22.4; 46.6). The PET-PET, DCE-DCE, and PET-DCE voxel-wise correlations varied according to individual tumor behaviors. Beyond this wide variability, the PET-PET and DCE-DCE correlations were mainly high (absolute rs values > 0.7), whereas the PET-DCE correlations were mainly low to moderate (absolute rs values < 0.7). Half the tumors showed a hypometabolism with low perfused/vascularized profile, a hallmark of hypoxia, and tumor aggressiveness.ConclusionA dynamic “one-stop shop” procedure applied to NSCLC is technically feasible in clinical practice. PET and DCE kinetic parameters assessed simultaneously are not highly correlated in NSCLC, and these correlations showed a wide variability among tumors and patients. These results tend to suggest that PET and DCE kinetic parameters might provide complementary information. In the future, this might make PET-MRI a unique tool to characterize the individual tumor biological behavior in NSCLC.

Highlights

  • Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) emerged a decade ago [1, 2]

  • PET and DCE kinetic parameters assessed simultaneously are not highly correlated in nonsmall-cell lung cancer model (NSCLC), and these correlations showed a wide variability among tumors and patients

  • These results tend to suggest that PET and DCE kinetic parameters might provide complementary information

Read more

Summary

Introduction

Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) emerged a decade ago [1, 2]. In the era of precision medicine, advanced multiparametric imaging offers many opportunities to better characterize the biological processes of tumors [4,5,6]. PET kinetic modeling of [18F]FDG quantifies the glucose metabolic pathway in tumor cells, characterized by the related K1, k2, and k3 PET microparameters [7]. Previous dynamic PET studies showed [18F]FDG microparameters to be surrogates of tumor aggressiveness or prognosis factors in a wide variety of malignancies [8,9,10,11], including primary nonsmall-cell lung cancer model (NSCLC) [12]. In magnetic resonance imaging (MRI), dynamic contrast-enhanced MRI (DCE-MRI) provides insight into the underlying tumor vascularization at the microcirculatory level, depending on the contrast agent leakage through the capillary wall. Previous oncological studies showed DCE microparameters to be significant predictors of response to treatment in several malignancies [14,15,16,17], including NSCLC [18]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.