Abstract

High performance components such as gear wheels shall be resistant to rolling-contactfatigue. This type of failure is usually caused by effects occurring on a microscopic scale, such ascrack initiation at non-metallic inclusions. Much effort has been invested so far in improving thesteel cleanliness. However, these high performance components often do not reach the desiredservice life. Preliminary failure within the guarantee terms still occurs which leads to high warrantycosts. Alternative to improving steel cleanliness, the damage tolerance of high performancecomponents could be increased by inducing the TRIP-effect around the crack tip. Due to high localstrain hardening, martensite transformation occurs. The high compressive stresses related to it coulddelay or stop crack propagation by reducing stress concentrations via plastic deformation. As aresult, rolling-contact fatigue resistance of carburized steels may be increased and preliminaryfailure may be avoided. Part I of this study focuses on modifying the chemical composition ofconventional 18CrNiMo7-6 steel with Al to develop a high-strength, yet ductile matrix with a highwork hardening potential. Dilatometric tests on laboratory melts analyze the possibility of adjustinga microstructure able to produce a TRIP-effect. Both isothermal annealing and Quenching andPartitioning (Q&P) are used to stabilize residual austenite and optimum process routes areidentified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call