Abstract

Isolated pineal glands of Djungarian hamsters (Phodopus sungorus) were continuously perifused by Krebs-Ringer buffer, stimulated with the beta-adrenergic receptor agonist isoproterenol to induce melatonin synthesis, and exposed for 7 hr to a 1800 MHz continuous wave (CW) or pulsed GSM (Global System for Mobile Communications)-modulated electromagnetic signal at specific absorption rate (SAR) rates of 8, 80, 800, and 2700 mW/kg. Experiments were performed in a blind fashion. Perifusate samples were collected every hour, and melatonin concentrations were measured by a specific radioimmunoassay. Both types of signal significantly enhanced melatonin release at 800 mW/kg SAR, while at 2700 mW/kg SAR, melatonin levels were elevated in the CW, but suppressed in the GSM-exposed pineal glands. As a temperature rise of approximately 1.2 degrees C was measured at 2700 mW/kg SAR, effects at this level are thermal. With regard to radiofrequency electromagnetic fields, the data do not support the 'melatonin hypothesis,' according to which nonthermal exposure suppresses melatonin synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.