Abstract

We demonstrate rapid single-flux-quantum (RSFQ) circuits with reduced energy consumption by lowering the driving voltages and critical currents of Josephson junctions (JJs). At lowered voltages, the energy statically consumed by bias resistors (which is dominant in RSFQ circuits) is reduced. In addition, we show that when RSFQ circuits are driven by lowered constant voltages, the dynamic energy consumption resulting from the switching of JJs is reduced because of the suppression of the amplitudes of the signal voltage pulses, even though the switching speed becomes slower. Utilization of miniaturized JJs with smaller critical currents also leads to the reduction of static and dynamic energy consumption without decreasing the switching speed. We have designed and tested ultra-low-energy 8-bit shift registers, and verified the correctness of high-speed operations up to 18 GHz. The average energy consumption, including that at the bias resistors, was measured at 4.0 aJ/bit, which represents an energy efficiency two orders of magnitude better than that of standard RSFQ circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call