Abstract

In this paper, we demonstrate an efficient 1.7-μm Tm-doped fiber laser whose cavity was embedded in a 1560 nm erbium/ytterbium-codoped fiber laser cavity, which enabled bidirectional pumping and made full use of the circulating pump in the parent laser cavity. A rate equation model was developed to optimize the fiber length and output coupling for a desired output power. In the experiment, a maximum output power at 1720 nm of 1.13 W was obtained under 10 W of 976 nm diode pump power, which correlated well with our modeling. The slope efficiency from the multimode 976 nm diode pump to 1720 nm output was 13.5%, while the slope efficiency in terms of launched 1560 nm pump power reached 62.5%. By using a short Tm-doped fiber to minimize signal reabsorption, a high signal-to-noise ratio over 65 dB was achieved. The prospect for further power scaling was also discussed based on our developed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.