Abstract

Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more qualified approach that yields in a shorter time appears to be promising for the future cell-based clinical treatments of the non-union bone fractures.Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on the radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more efficient approach that yields in a shorter time appears to be promising for future cell-based clinical treatments of the non-union bone fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call