Abstract

The 176Lu–176Hf and 147Sm–143Nd decay systems are routinely used to determine garnet (Grt)–whole-rock (WR) ages; however, the 176Lu–176Hf age of garnet is typically older than the 147Sm–143Nd age determined from the same aliquots. Here we present experimental data for Lu3+ and Hf4+ diffusion in garnet as functions of temperature, pressure and oxygen fugacity and show that the diffusivity of Hf4+ in almandine/spessartine garnet is significantly slower than that of Lu3+. The diffusive closure temperature (T C) of Hf4+ is significantly higher than that of Nd3+, and although this property is partly responsible for the observed 176Lu–176Hf and 147Sm–143Nd Grt–WR age discrepancies, the difference between the T C-s of Lu3+ and Hf4+ could lead to apparent Grt–WR 176Lu–176Hf ages that are skewed from the age of Hf4+ closure in garnet. In addition, the slow diffusivity of Hf4+ indicates that the bulk of metamorphic garnets retain a substantial fraction of prograde radiogenic 176Hf throughout peak metamorphic conditions, a phenomenon that further complicates the interpretation of 176Lu–176Hf garnet ages and invalidates the use of analytical T C expressions. We argue that the diffusion of trivalent rare earth elements in garnet becomes much faster when their concentration level falls below a few hundred ppm, as in the experiments of Tirone et al. (Geochim Cosmochim Acta 69: 2385–2398, 2005), and further argue that this low-concentration mechanism is appropriate for modeling the susceptibility of 147Sm–143Nd garnet ages to diffusive resetting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call