Abstract
The term endocrine disruptor (ED) has been used widely to characterize natural and synthetic environmental compounds that may interfere with the endocrine system(s) of humans and wildlife. In previous studies, we demonstrated that in vitro single exposure to EDs induces CaBP-9k expression, a useful biomarker for detecting the estrogenic activities of EDs in rat pituitary GH3 cells. Here we employ the identical model to examine the effects of EDs in the regulation of growth hormone (GH) gene expression, an important hormone in growth, development, and body composition. We measured levels of GH mRNA transcription and GH release using semi-quantitative RT-PCR and EIA kit, respectively. GH3 cells were treated with alkyphenols (APs), i.e., octyl-phenol (OP), nonyl-phenol (NP), and bisphenol A (BPA), in a dose-dependent manner (10–5, 10–6, and 10–7 M) and harvested following 24 h of treatment. Cells were also exposed to a high concentration (10–5 M) of OP, NP, or BPA and harvested at various time points (1, 3, 6, 12, and 24 h). An anti-estrogen, ICI 182780 (10–7 M) was used to examine the potential involvement of estrogen receptor (ER) in the induction of GH by EDs through an ER-mediated pathway. The data were analyzed by one-way ANOVA, followed by Tukey's multiple comparison. OP, NP, and BPA induced a significant increase in GH gene expression at high (10–5 M) and medium (10–6 M) doses at 24 h. ED-exposure induced a marked increase in GH gene transcription as early as 6 h and peaked at 12 h. Co-treatment with ICI 182780 significantly attenuated ED-induced GH expression in GH3 cells. Interestingly, the level of in vitro GH release was increased significantly at 24 h in response to OP, NP, or BPA, whereas co-treatment with ICI 182780 significantly diminished ED-induced GH secretion in GH3 cells, indicating that ER may play a part in both GH gene transcription and GH release in these cells. Here we demonstrate for the first time that single in vitro exposure to OP, NP, or BPA results in an increase in GH expression at 24 h in GH3 rat pituitary cells. These results may provide new insight into the mode of ED action in GH gene regulation as well as the biological pathway underlying these molecular events. Furthermore, data showing GH responsiveness evoked by EDs supports the aim to develop an assay for use in predicting adverse health effects of EDs in humans and wildlife.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.