Abstract
Epidemiological and clinical studies suggest the possibility that estrogens might have a cytoprotective effect on the liver. The aim of the present study was to test the hypothesis that 17beta-estradiol (E2) prevents hepatocellular damage induced by deoxycholic acid (DCA), a hydrophobic bile acid. HepG2 cells were exposed for 24 h to DCA (350 micromol/L). Cell viability, aspartate aminotransferase and lactate dehydrogenase activity and apoptosis were measured as indices of cell toxicity. The effect of DCA was compared to that observed using either a hydrophilic bile acid, ursodeoxycholic acid (UDCA; 100 micromol/L), or E2 at different concentrations (1 nmol/L, 10 nmol/L, 50 nmol/L and 50 micromol/L) or mixtures of E2/DCA or UDCA/DCA. The same experiments were performed using WRL-68 cells that, at variance with HepG2, express a higher level of nuclear estrogen receptor. High concentrations of E2 and UDCA prevented DCA-induced decrease in cell viability, increase in enzyme activity and apoptosis evaluated both by 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and TdT-mediated dUTP nick-end labeling (TUNEL) assays. In addition, DCA-related apoptosis, assessed by caspase activity, was also prevented by E2 (P < 0.01) in physiological (1-10 nmol/L) doses. The cytoprotective effects of E2 and UDCA was also observed in the WRL-68 cell line. 17Beta-Estradiol prevents DCA-induced cell damage in HepG2 and WRL-68 cell lines to an extent comparable to UDCA. The hypothesis that the protective effect of E2 may be mediated by a mechanism that is nuclear estrogen receptor independent, deserves further verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.