Abstract

Hormone replacement therapy (HRT) plays an important role in the treatment and prevention of osteoporosis. Here, 17β-estradiol (E2)-loaded PEGlyated upconversion nanoparticles (E2-UCNP@pPEG) were synthesized that retained E2 bioactivity and improved delivery efficiency over a relatively long time-period. E2-UCNP@pPEG was synthesized and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), among other methods. The loading efficiency of E2 was determined to be 14.5 wt %, and the nanocarrier effectively facilitated sustained release. Confocal upconversion luminescence (UCL) imaging using the CW 980 nm laser as excitation resource revealed significant interactions of E2-UCNP@pPEG with preosteoblasts. E2-UCNP@pPEG treatment of preosteoblasts induced positive effects on differentiation, matrix maturation, and mineralization. Moreover, in situ and ex vivo UCL imaging studies disclosed that E2 encapsulated in the nanocomposite was passively delivered to bone. Our results collectively suggest that this nanoreservoir provides an effective drug-loading system for hormonelike drug delivery and support its considerable potential as a therapeutic agent for osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.