Abstract

Our group and others have demonstrated that 17β-estradiol (E2) induces neurotrophic and neuroprotective responses in hippocampal and cortical neurons which are dependent upon the Src/extracellular signal-regulated kinase (ERK) signaling pathways. The purpose of this study was to determine the upstream mechanism(s) that initiates the signaling cascade leading to E2-inducible neuroprotection. We tested the hypothesis that E2 activates rapid Ca 2+ influx in hippocampal neurons, which would lead to activation of the Src/ERK signaling cascade and up-regulation of Bcl-2 protein expression. Using fura-2 ratiometric Ca 2+ imaging, we demonstrated that E2 induced a rapid rise of intracellular Ca 2+ concentration ([Ca 2+] i) within minutes of exposure which was blocked by an L-type Ca 2+ channel antagonist. Inhibition of L-type Ca 2+ channels resulted in a loss of E2 activation of the Src/ERK cascade, activation of cyclic-AMP response element binding protein (CREB) and subsequent increase in Bcl-2. Real-time intracellular Ca 2+ imaging combined with pERK immunofluorescence, demonstrated that E2 induced [Ca 2+] i was coincident with ERK activation in the same neuron. Small interfering RNA knockdown of CREB resulted in a loss of E2 activation of CREB and subsequent E2-induced increase of Bcl-2 expression. We further demonstrated the presence of specific membrane E2 binding sites in hippocampal neurons. Together, these data indicate that E2-induced Ca 2+ influx via the L-type Ca 2+ channel is required for E2 activation of the Src/ERK/CREB/Bcl-2 signaling. Implications of these data for understanding estrogen action in brain and use of estrogen therapy for prevention of neurodegenerative disease are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.