Abstract

Background/Aims: The risk of heart disease is higher in males than in females. However, this advantage of females declines with increasing age, presumably a consequence of decreased estrogen secretion and malfunctioning of the estrogen receptor. We previously demonstrated that 17β-estradiol (E2) prevents cardiomyocyte hypertrophy, autophagy and apoptosis via estrogen receptor α (ERα), but the effects of ERβ on myocardial injury remained elusive. The present paper thus, investigated the cardioprotective effects of estrogen (E2) and ERβ against hypoxia-induced cell death. Methods: Transient transfection of Tet-On ERβ gene construct was used to overexpress ERβ in hypoxia-treated H9c2 cardiomyoblast cells. Results: Our data revealed that IGF1R, Akt phosphorylation and Bcl-2 expression are enhanced by ERβ in H9c2 cells. Moreover, ERβ overexpression reduced accumulation of hypoxia-related proteins, autophagy-related proteins and mitochondria-apoptotic proteins and enhanced the protein levels of Bcl-2, pAkt and Bad under hypoxic condition. In neonatal rat ventricular myocytes (NRVMs), we observed that hypoxia induced cell apoptosis as measured by TUNEL staining, and E2 and/or ERβ could totally abolish hypoxia-induced apoptosis. The suppressive effects of E2 and/or ERβ in hypoxia-treated NRVMs were totally reversed by ER antagonist, ICI. Taken together, E2 and/or ERβ exert the protective effect through repressed hypoxia-inducible HIF-1α, BNIP3 and IGFBP-3 levels to restrain the hypoxia-induced autophagy and apoptosis effects in H9c2 cardiomyoblast cells. Conclusion: The results suggest that females probably could tolerate better prolonged hypoxia condition than males, and E2/ERβ treatment could be a potential therapy to prevent hypoxia-induced heart damage.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.