Abstract
PS-341 is a highly selective and potent proteasome inhibitor that is cytotoxic to various types of cancer. However, no objective response was seen in a clinical trial with PS-341 as a single agent in non-small cell lung cancer. Its antitumor activity is limited by the simultaneously activated antiapoptosis pathway. Recently, PS-341-induced NF-κB activation via IκBα degradation has been suggested to be one of its antiapoptotic effects. In this study, we investigated the effects of a combined application of the heat shock protein (Hsp) 90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) with PS-341 in lung cancer cells. Hsp90 inhibition with 17-AAG was effective in enhancing PS-341-induced lung cancer cell death in vitro and in vivo. 17-AAG pretreatment induced the degradation of upstream regulators of IκB, IL-1R-associated kinase-1 (IRAK-1), and IκB kinases (IKKs), dose and time dependently, which resulted in blocking of PS-341-induced IκBα degradation, p65 nuclear translocation, transcriptional activity, and NF-κB-regulated antiapoptotic gene expressions such as COX-2. The concentrations of 17-AAG used for combinatorial treatment with PS-341 did not change cell viability or the activity of proteasome complex. Moreover, 17-AAG pretreatment decreased the level of phsophorylated Akt at serine 473 residue and suppressed active Akt-dependent inactivation of glycogen synthase kinase 3β. 17-AAG mediated the dissociation of its client proteins (IRAK-1, IKKs, and Akt) from the Hsp90 complex. As a result, it induced degradation of target proteins. Our results suggest that the combination of 17-AAG and PS-341 could be an effective anticancer therapy that overcomes the limited effects of PS-341.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of respiratory cell and molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.