Abstract

BackgroundThe accumulation and aggregation of α-synuclein in nerve cells and glia are characteristic features of a number of neurodegenerative diseases termed synucleinopathies. α-Synuclein is a highly soluble protein which in a nucleation dependent process is capable of self-aggregation. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved.Methodology/Principal FindingsIn the present study the possible aggregate clearing effects of the geldanamycin analogue 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin) was investigated. Towards this, an oligodendroglial cell line (OLN-93 cells), stably expressing human α-synuclein (A53T mutation) was used. In these cells small punctate aggregates, not staining with thioflavine S, representing prefibrillary aggregates, occur characteristically. Our data demonstrate that 17-AAG attenuated the formation of α-synuclein aggregates by stimulating macroautophagy. By blocking the lysosomal compartment with NH4Cl the aggregate clearing effects of 17-AAG were abolished and α-synuclein deposits were enlarged. Analysis of LC3-II immunoreactivity, which is an indicator of autophagosome formation, further revealed that 17-AAG led to the recruitment of LC3-II and to the formation of LC3 positive puncta. This effect was also observed in cultured oligodendrocytes derived from the brains of newborn rats. Inhibition of macroautophagy by 3-methyladenine prevented 17-AAG induced occurrence of LC3 positive puncta as well as the removal of α-synuclein aggregates in OLN-A53T cells.ConclusionsOur data demonstrate for the first time that 17-AAG not only causes the upregulation of heat shock proteins, but also is an effective inducer of the autophagic pathway by which α-synuclein can be removed. Hence geldanamycin derivatives may provide a means to modulate autophagy in neural cells, thereby ameliorating pathogenic aggregate formation and protecting the cells during disease and aging.

Highlights

  • Our data demonstrate for the first time that 17-AAG causes the upregulation of heat shock proteins, and is an effective inducer of the autophagic pathway by which a-synuclein can be removed

  • In Parkinson’s disease (PD) the accumulation and aggregation of a-synuclein in neurons is a characteristic feature, while a-synuclein positive glial cytoplasmic inclusions (GCIs) originating in oligodendrocytes are the histological hallmark of multiple system atrophy (MSA), a specific adult onset neurodegenerative disease with symptoms of Parkinsonism [1,2]

  • In the present study we have investigated the possible aggregateclearing effects of the geldanamycin analogue 17-AAG. 17-AAG is currently in clinical trials as an anticancer drug, binds to and inhibits HSP90 [25] and triggers the activation of a heat shock response in mammalian cells [26,27]

Read more

Summary

Introduction

In Parkinson’s disease (PD) the accumulation and aggregation of a-synuclein in neurons is a characteristic feature, while a-synuclein positive glial cytoplasmic inclusions (GCIs) originating in oligodendrocytes are the histological hallmark of multiple system atrophy (MSA), a specific adult onset neurodegenerative disease with symptoms of Parkinsonism [1,2]. These inclusions are further characterized by staining with antibodies against ubiquitin and a variety of heat shock proteins (HSPs), the small HSP aB-crystallin. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.