Abstract

We report on a transmission experiment over high-performance pure silica core fiber (PSCF) of 16 Nyquist wavelength-division-multiplexed (Nyquist-WDM) channels at a symbol rate of 15.625 GBaud, using polarization-multiplexed (PM) 16 symbols quadrature amplitude modulation (16QAM), resulting in a per-channel raw bit rate of 125 Gb/s. The channel spacing is 16 GHz, corresponding to 1.024 times the symbol rate. The interchannel crosstalk penalty is drastically reduced through the confinement of the signal spectrum within a near-Nyquist bandwidth, achieved with digital filtering and digital-to-analog converters (DACs) operating at 1.5 samples/symbol. The optical line is a recirculating loop composed of two spans of high-performance PSCF with erbium-doped fiber amplifiers only. The transmission distance of 3590 km at a target line bit-error rate (BER) of 1.5 10-2 is achieved at a raw spectral efficiency (SE) of 7.81 b/s/Hz. Assuming a commercial hard forward error correction with 20.5% redundancy, capable of handling the target BER, the net SE is 6.48 b/s/Hz, the highest so far reported for multithousand kilometer transmission of PM-16QAM at ≥ 100 Gb/s per channel. These results demonstrate the feasibility of very high SE DAC-enabled ultra-long-haul quasi-Nyquist-WDM transmission using PM-16QAM with current technologies and manageable digital signal processing complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call