Abstract

Training system efficiency may be defined as the ratio of fruit produced to the amount of light intercepted by the canopy. In apple, a positive, linear relationship between yield and light intercepted is generally found, but in peach similar data are hard to come by. This paper reports data from an ongoing training systems trial now in the 7th year, with trees trained as Y, palmette, and delayed vase. During the life of the orchard, light interception has been measured for the different tree shapes, the yields have been recorded, and, in some years, whole-canopy gas exchanges of cropping trees have been measured. In general, the trees have been intercepting light in amounts proportional to canopy shape and tree density, with the Y (planted at higher density) intercepting more light than the other two systems, which appear more comparable to each other, despite the fact that they intercept light during the day in different ways, with the delayed vase exposing more or less the same leaves to incoming light during most of the day. Cropping has followed the amounts of light intercepted, with higher yields for the Y, without appreciable differences in fruit quality traits. The data accumulated so far indicate furthermore that the palmette and the delayed vase, despite slightly different light interception potentials (lower for the palmette), have similar yields. This might depend in part on the fact that these two systems intercept light according to different patterns during the day, with the palmette—which distributes the light intercepted in a more even fashion between the two sides—perhaps at an advantage over the vase in terms of managing the stress of excessive light (heat) loads during the central hours of the day. Whole canopy Carbon exchange data have been found to be in agreement with the patterns of light interception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.