Abstract

The PI3K-AKT pathway and Aurora kinase play essential roles in such cellular processes as cell survival, angiogenesis, and differentiation, and are usually expressed at maximum levels during cancer cell proliferation. The present study investigated the effect of the natural compound, 16-hydroxycleroda-3,13-dien-15,16-olide (PL3), on regulating the PI3K-AKT pathway and Aurora B, which led to cancer cell apoptosis. PL3 acts as a PI3K inhibitor by influencing cell survival, signaling transduction, and cell cycle progression. It was observed that PL3 targeted and induced dephosphorylation of the PI3K pathway, degradation of Aurora B and mitotic-related gene expressions, and sequentially shut down the cell cycle. This eventually resulted in cell death. As Aurora B was downregulated, spindle dysfunction and destruction of the G 2/M phase checkpoint resulted in DNA-damaged cells undergoing apoptosis. Moreover, PL3 also resensitized T315I-mutated Bcr-ABL + BA/F3 cells to improve the cytotoxicity of Imatinib in Imatinib-resistant cell line. Taken together, PL3 can perturb the PI3K-AKT pathway and Aurora B resulting in gene silencing and cell cycle disturbance. It was demonstrated that PL3 acted like a novel small-molecule PI3K modulator, thereby potentially contributing to cancer chemotherapy and combination medication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.