Abstract

OBJECTIVES/GOALS: Preeclampsia (PE) is a hypertensive disorder of pregnancy, affecting 5 - 7% of pregnancies worldwide. A major cause of morbidity and mortality, PE is also associated with subsequent adverse health outcomes, including long-term increased risk of cardiovascular disease. The genetics conferring increased risk for PE are incompletely understood. METHODS/STUDY POPULATION: We performed a cross-ancestry, fixed-effects meta-analysis, incorporating both published and unpublished genome-wide association study (GWAS) summary statistics. In addition to publicly available summary statistics from two prior studies, we generated GWAS data from three electronic health record biobanks (BioVU, eMERGE, and PMBB). In total, we utilized data from 359,378 individuals (4,411 cases and 354,967 controls). Leveraging this large-scale biobank data importantly allows for detection of complex factors contributing to the diverse etiology of PE. Cases across cohorts were defined using PE-specific ICD-9/ICD-10 codes and phecodes. Cohorts included pregnant individuals of self-identified non-Hispanic Black, non-Hispanic White, and East Asian ancestry. RESULTS/ANTICIPATED RESULTS: 2 of 20,204,625 loci achieved genome-wide significance (p < 5 × 10–8) when minor allele frequency was limited to common variants (>0.01). The most significant locus was rs138180605 (p = 1.77 × 10–8), located in an intergenic region between FGFR2 and ATE1, both previously associated with breast cancer. The other significant locus was rs137895377 (p = 2.33 × 10–8), located in an intronic region of PLEKHO1. Another 225 loci achieved suggestive significance (p < 1 × 10–5). 203 loci could be mapped to 109 unique genes, some previously associated with related phenotypes such as hypertension. Next steps will focus on functional analyses, including genetically predicted gene expression incorporating placental tissue, followed by construction of a PE polygenic risk score to demonstrate predictive utility of results. DISCUSSION/SIGNIFICANCE: This work has contributed to the limited body of knowledge surrounding maternal genetic susceptibility to PE by identifying several loci warranting further investigation. Further work will expand on these results to improve understanding of genetic factors and clarify clinical risk of disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call