Abstract

In this paper, we report a nanosecond 16 × 16 silicon electro-optic switch chip based on a Benes architecture. The switch adopts dual-ring-assisted Mach–Zehnder interferometers as the basic building blocks. In each switch element, both TiN microheaters and PIN diodes are integrated for ring resonance alignment and high-speed switching, respectively. A transfer-matrix-based theoretical model is established to analyze the switch performances. The 16 × 16 switch is characterized by measuring the optical transmission spectra and quadrature phase-shift keying (QPSK) data transmission through 16 representative optical paths. The insertion loss of the entire switch chip is 10.6 ± 1.7 dB and the crosstalk is less than −20.5 dB. The 32-Gb/s QPSK signal is successfully switched to different destination ports by reconfiguring the optical paths, verifying the signal integrity after switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.