Abstract

The direct incorporation of (15)NH(4)Cl into amino acids in illuminated spinach (Spinacia oleracea L.) chloroplasts in the presence of 2-oxoglutarate plus malate was determined. The amido-N of glutamine was the most highly labeled N-atom during (15)NH(4) assimilation in the presence of malate. In 4 minutes the (15)N-label of the amido-N of glutamine was 37% enriched. In contrast, values obtained for both the N-atom of glutamate and the amino-N of glutamine were only about 20% while that of the N-atom of aspartate was only 3%. The addition of malate during the assimilation of (15)NH(4)Cl and Na(15)NO(2) greatly increased the (15)N-label into glutamine but did not qualitatively change the order of the incorporation of (15)N-label into all the amino acids examined. This evidence indicates the direct involvement of the glutamine synthetase/glutamate synthase pathway for ammonia and nitrite assimilation in isolated chloroplasts. The addition of malate or succinate during ammonia assimilation also led to more than 3-fold increase in [(14)C]2-oxoglutarate transport into the chloroplast as well as an increase in the export of [(14)C]glutamate out of the chloroplast. Little [(14)C]glutamine was detected in the medium of the chloroplast preparations. The stimulation of (15)N-incorporation and [(14)C]glutamate export by malate could be directly attributed to the increase in 2-oxoglutarate transport activity (via the 2-oxoglutarate translocator) observed in the presence of exogenous malate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.