Abstract

In the solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli in the free state two structural segments can be distinguished: a well structured, rigid N-terminal part displaying a betaalphabetabetabetaalpha topology and a flexible C-terminal tail comprising last 20 amino-acid residues. The backbone dynamics of Yfia protein was studied by (15)N nuclear magnetic relaxation at three magnetic fields and analyzed using model-free approach. The overall diffusional tumbling of the N-terminal part is strongly anisotropic with a number of short stretches showing increased mobility either on a subnanosecond time scale, or a micro- to millisecond time scale, or both. In contrast, the unstructured polypeptide chain of the C-terminal part, which cannot be regarded as a rigid structure, shows the predominance of fast local motions over slower ones, both becoming faster closer to the C-terminus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call