Abstract

Distributions of δ15N and δ13C for biogenic substances in the Antarctic Ocean and in the Otsuchi River estuary in Japan were investigated to construct isotope biogeochemical framework for assessing marine ecosystems. The isotopic compositions of phytoplankton were particularly low in the Antarctic Ocean. High nitrate concentration and high PCO2 in the surface sea waters, and the low light intensity seem to enhance the kinetic isotope fractionations that preferred the depletion of 15N and 13C in the algal body A clear-cut linear relationship between animal δ15N and its trophic level was obtained in the Antarctic system. In the estuary, the variation of isotope ratios were principally governed by the mixing of land-derived organic matter, marine phytoplankton, and seagrasses. A food-chain effect of 15N enrichment was also confirmed. An isotopically ordered structure was presented for a marine estuarine ecosystem. The isotopic abundances in a food web vary mainly because of the variation in 15N and 13C conte...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.