Abstract

Evaluation of morphology of first polar body (1st PB) could be a method for the oocyte's quality and developmental competence. The developmental potential of oocyte with fragmented PB after in vitro maturation (IVM) is a controversial issue. The aim of this study is to investigate the effects of PB morphology type on oocyte quality and developmental competence after IVF. Porcine ovaries were obtained from prepubertal gilts at a local slaughterhouse and transported to the laboratory within 2 h in physiological saline supplemented with 100 IU mL–1 penicillin G and 100 mg mL–1 streptomycin sulfate. The cumulus–oocyte complexes (COC) were aspirated using an 18-gauge needle attached to a 10-mL disposable syringe from superficial follicles 3 to 6 mm in diameter followed by IVM. After IVM, oocytes were classified into 3 types as follows, oocytes with normal PB (A type), oocytes with a little of fragmented PB (B type), and oocytes with separated 2 PBs (C type), respectively. As classification of PB types, we analysed the distribution ratio of each PB type after IVM, and then performed IVF for analysis of fertilization rate and developmental potential. The ratio of oocyte with A type (73%) was significantly (P < 0.05) higher than that of B type (24.5%) or C type (2.5%) after IVM. Only mature oocytes were selected from A and B type and were subjected to IVF because of a small number of oocytes with C type. In the IVF experiment, the efficiency of monospermy and fertilization were significantly higher in oocytes of A type (46.7%) than those of type B (20.0%). The cleavage rate of oocytes with A type (63.9%) was significantly (P < 0.05) higher than the oocytes with B type (43.8%). Embryonic developmental competence to the blastocyst stage after IVF was significantly (P < 0.05) higher in the A-type oocytes (26.3%) than in the B-type oocytes (16.9%). The levels of glutathione and reactive oxygen species were not affected by the morphological classification of the PB. In summary, these results suggest that polar body morphology could be a marker of oocyte quality after IVM. We are currently studying gene expression of each oocytes and blastocysts. This work was supported, in part, by a grant from the Next-Generation BioGreen 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call