Abstract

The results are presented of a study and optimization of the conditions under which heterointerfaces of the GaAs–InGaAsP type are formed via the direct intermolecular wafer bonding (fusion) of a heterostructure of an active region on an InP substrate and distributed Bragg reflectors on GaAs substrates upon the fabrication of hybrid heterostructures for long-wavelength vertical-cavity surface-emitting lasers (VCSELs). The heterostructures are grown by solid-source molecular-beam epitaxy. It is shown that, in the case of the incomplete removal of oxide films during preparation of the wafers before fusion and/or in the presence of adsorbed water on the wafer surfaces, the fused interface contains a large number of amorphous inclusions, which are most likely oxides of Group-III elements. Optimization of the conditions in which a buried tunnel junction is formed on the surface of the heterostructure on an InP wafer made it possible to reduce the surface roughness to 1 nm and to ensure that the thickness of the GaAs–InGaAsP fused interface does not exceed 5 nm, with no dislocations or other extended defects found at the fused heterointerfaces. The 1.55-μm VCSELs fabricated from the hybrid heterostructures created using the developed technology demonstrate efficient lasing under continuous-wave pumping in a wide temperature range, which is indicative of the high optical quality of the fused heterointerfaces in the VCSEL structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.