Abstract

Distributed Feed Back (DFB) lasers working in the third telecom window are essential for optical communications, eyesafe sensors and lab-on-chip devices. Glass integrated optics technology allows realizing such devices by using rareearth doped substrates. Despite their good output power and spectral characteristic, DFB lasers still present some reliability issues concerning the Bragg grating protection. Moreover Erbium doped glasses are not compatible with the realization of passive optical functions. In order to solve the DFB lasers reliability issues and to ensure a monolithic integration between active and passive functions, we propose an hybrid-device architecture based on ion-exchange technology and wafer bonding. The Ag<sup>+</sup>/Na<sup>+</sup> ion-exchange in the silicate glass wafer is used to realize the passive functions and the lateral confinement of the electromagnetic field. Through a second ion exchange step, a slab waveguide is made on the Erbium-Ytterbium doped glass wafer. The Bragg grating is processed on the passive substrate and the two glasses are bonded. The potential of this structure has been demonstrated through the realization of a DFB hybrid laser with a fully encapsulated Bragg grating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.