Abstract
The single photon sensitivity of Geiger-mode avalanche photo diodes (GmAPDs) has facilitated the development of LADAR systems that operate at longer stand-off distances, require lower laser pulse powers and are capable of imaging through a partial obscuration. In this paper, we describe a GmAPD LADAR system which operates at the eye-safe wavelength of 1541 nm. The longer wavelength should enhance system covertness and improve haze penetration compared to systems using 1064 nm lasers. The system is comprised of a COTS 1541 nm erbium fiber laser producing 4 ns pulses at 80 kHz to 450 kHz and a COTS camera with a focal plane of 32x32 InGaAs GmAPDs band-gap optimized for 1550 nm. Laboratory characterization methodology and results are discussed. We show that accurate modeling of the system response, allows us to achieve a depth resolution which is limited by the width of the camera’s time bin (.25 ns or 1.5 inches) rather than by the duration of the laser pulse (4 ns or 2 ft.). In the presence of obscuration, the depth discrimination is degraded to 6 inches but is still significantly better than that dictated by the laser pulse duration. We conclude with a discussion of future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.