Abstract

Stathmin is a ubiquitous cytoplasmic protein, phosphorylated in response to agents regulating the proliferation, the differentiation and the specialized functions of cells, in a way possibly integrating the actions of diverse concomitant regulatory signals. Its expression is also regulated in relation with cell proliferation and differentiation and reaches a peak at the neonatal stage.To assess the possible role of stathmin at earlier stages of development, we examined its expression and regulation in embryonal carcinoma (EC) and derived cell lines as well as in the early mouse embryo. Interestingly, stathmin is highly abundant in the undifferentiated, multipotential cells of the F9, 1003 and 1009 EC cell lines. Its high expression markedly decreased, both at the protein and mRNA levels, when F9 cells were induced to differentiate into endodermal-like cells with retinoic acid and dibutyryl-cAMP. Stathmin was also much less abundant in differentiated cell lines such as the trophectodermal line TDM-1, as well as in several F9- and 1003-derived cell lines commited to differentiate towards the mesodermal and neuroectodermal lineages but still proliferating. Therefore, the observed decrease of stathmin expression is not related to the reduced proliferation rate but rather to the differentiation of the multipotential EC cells.The immunocytochemical pattern of stathmin expression during early mouse development indicated that stathmin is also highly abundant in the multipotential cells of the inner cell mass of the blastula, whereas it is much lower in the differentiated trophectodermal cells. These results confirm the physiological relevance of the observations with EC cells, and suggest that stathmin, in addition to its high expression at later stages of development and in the adult nervous system, may be considered as a new marker of the multipotential cells of the early mouse embryo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.