Abstract

Zinc oxide (ZnO) and Er-doped zinc oxide (ZnO:Er) thin films were formed by pulsed laser deposition, and characterized by photoluminescence (PL) and X-ray diffraction (XRD) in order to clarify the 1.54μm emission mechanism in the ZnO:Er films. Er ions were excited indirectly by the 325nm line of a He–Cd laser, and the comparison of the ultraviolet to infrared PL data of ZnO and ZnO:Er films showed that the 1.54μm emission of Er3+ in ZnO:Er film appears at the expense of the band edge emission and the defect emission of ZnO. The crystallinity of the films was varied with the substrate temperature and post-annealing, and it was found that the intensity of the 1.54μm emission is strongly related with the crystallinity of the films. There are three processes leading to the 1.54μm emission; absorption of excitation energy by the ZnO host, energy transfer from ZnO to Er ions, and radiative relaxation inside Er ions, and it is suggested that the crystallinity plays an important role in the first two processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.