Abstract

Abstract Nerve growth factor (NGF) beta is a seminal plasma protein that has been associated with sire conception rates in cattle. Previous research showed that the administration of NGFβ, via culture media, to cows resulted in improved conceptus development. Though this finding was thought to be an indirect effect of improved corpus luteum (CL) function, questions raised if NGFβ could act directly on the embryo to promote development. This work seeks to determine the effect of NGFβ supplementation during in-vitro fertilization (IVF) on cleavage and blastocyst rates. How does the administration of NGFβ in culture media affect cleavage and blastocyst rates during in-vitro fertilization? Abattoir-derived bovine ovaries were used for recovery of cumulus-oocyte complexes (COC). Selected COC were placed in the maturation medium. Expanded COC were inseminated with frozen-thawed spermatozoa, and IVF media was supplemented with either 0 ng/mL or 100 ng/mL NGF. Presumptive zygotes were transferred to development medium in a tri-gas chamber with 5% CO2, 5% O2, and 90% N2 in a humidified atmosphere at 39°C, mimicking the bovine uterine climate, until 8 days. Treatment with NGFβ increased the percentage of cleaved embryos at 48 hours and the percentage of hatched embryos at 8 days per oocyte. Treatment of NGFβ did not alter the percentage of blastocysts per cleaved embryo or the percentage of hatched blastocysts. These results show that the NGFβ can act directly on the embryo during fertilization to alter embryonic development, specifically embryonic cleavage rates. Future in vivo studies should assess the downstream effects of NGF treatment on conception rates in cattle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.