Abstract

Abstract Antioxidant supplementation has been shown to decrease post exercise oxidative stress but can lead to decreased post-exercise muscle protein synthesis. The objective of this study was to compare the effects of the supplementation with a control feed with low antioxidant content (CONT) to a high antioxidant feed (AO), versus a high antioxidant and branched chain amino acid feed (BCAO) on post-exercise protein synthesis and oxidative stress. Our hypothesis is that supplementing AO with BCAO will reduce oxidative stress without hindering muscle protein synthesis. Eighteen mixed breed conditioned polo horses were assigned to one of the three treatments. All horses consumed CONT for 30 days and were then submitted to a lactate threshold test (LT). One hour after this and all LT, each group was assigned and given their treatments. LT were done at 15 and 30 days of supplementation. Blood was collected before, two and four hours after LT, and analyzed for oxidative stress based on glutathione peroxidase, superoxide dismutase and malondialdehyde concentrations by ELISA. Muscle biopsies were taken before and 4 hours after LT and analyzed for the expression of protein synthesis by RT-PCR. Results were analyzed in a mixed model by ANOVA and compared by LSM. A reduction of oxidative stress was found over time (P < 0.050) with no treatment effect (P >0.50). An upregulation of protein synthesis after exercise was found for muscle primers CD36, CPT1, DK4, MyF5, and Myogenin (P < 0.050). There was a treatment by time effect for MyoD (P = 0.027), where AO was upregulated the most after exercise compared to BCAO and CONT. DK4 had a treatment by time effect trend (P = 0.073), where AO and BCAO were upregulated and CONT was unchanged after exercise. This study demonstrated post exercise muscle synthesis with no advantage of AO plus BCAO compared to AO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.