Abstract

Phase-locked loops (PLLs) are widely used for clock generation in modern digital systems. All-digital PLLs have been proposed to address design issues in conventional analog PLLs. However, current all-digital PLLs require custom circuit design, and therefore cannot fully leverage advanced automated digital design flows. While fully synthesizable PLLs have been reported, they suffer from high power consumption and large area. This arises because each stage of the ring needs to have a large number of parallel tristate buffers/inverters in order to achieve the necessary frequency resolution. Moreover, custom-designed cells are required in prior synthesizable PLLs, introducing additional place-and-route (P&R) steps, leading to poor portability, integration, and scalability. To address these issues, this paper proposes a fully synthesizable PLL based solely on a standard digital library, with a current-output digital-to-analog converter (DAC) for maintaining frequency linearity and duty balance, an interpolative phase-coupled oscillator for minimizing the output phase imbalance from automatic P&R, as well as an edge injection technique for avoiding injection-pulse width issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.