Abstract

The 3∼5 µm mid-infrared (mid-IR) light has several exceptional benefits in the case of adverse atmospheric conditions compared to the 1.5 µm band, so it is a promising candidate for optical carriers for free-space communication (FSO) through atmospheric channels. However, the transmission capacity in the mid-IR band is constrained in the lower range due to the immaturity of its devices. In this work, to replicate the 1.5 µm band dense wavelength division multiplexing (DWDM) technology to the 3 µm band for high-capacity transmission, we demonstrate a 12-channel 150 Gbps FSO transmission in the 3 µm band based on our developed mid-IR transmitter and receiver modules. These modules enable wavelength conversion between the 1.5 µm and 3 µm bands based on the effect of difference-frequency generation (DFG). The mid-IR transmitter effectively generates up to 12 optical channels ranging from 3.5768 µm to 3.5885 µm with a power of 6.6 dBm, and each channel carries 12.5 Gbps binary phase shift keying (BPSK) modulated data. The mid-IR receiver regenerates the 1.5 µm band DWDM signal with a power of -32.1 dBm. Relevant results of regenerated signal demodulation have been collected in detail, including bit error ratio (BER), constellation diagram, and eye diagram. The power penalties of the 6th to 8th channels selected from the regenerated signal are lower than 2.2 dB compared with back-to-back (BTB) DWDM signal at a bit error ratio (BER) of 1E-6, and other channels can also achieve good transmission quality. It is expected to further push the data capacity to the terabit-per-second level by adding more 1.5 µm band laser sources and using wider-bandwidth chirped nonlinear crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.