Abstract

To determine whether the lipoxygenase metabolites of arachidonic acid, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids [5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, respectively] are angiogenic, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All three HETEs stimulated HDMVEC tube formation and migration. Because 15(S)-HETE was found to be more potent than 5(S)-HETE and 12(S)-HETE in HDMVEC tube formation, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 15(S)-HETE stimulated Akt and S6K1 phosphorylation in HDMVEC in a time-dependent manner. Wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3K), blocked both Akt and S6K1 phosphorylation, whereas rapamycin, a specific inhibitor of Akt downstream effector, mammalian target of rapamycin (mTOR), suppressed only S6K1 phosphorylation induced by 15(S)-HETE suggesting that this eicosanoid activates the PI3K-Akt-mTOR-S6K1 signaling in HDMVEC. Wortmannin, LY294002, and rapamycin also inhibited 15(S)-HETE-induced HDMVEC tube formation and migration. In addition, all three HETEs stimulated angiogenesis as measured by in vivo Matrigel plug assay with 15(S)-HETE being more potent. Pharmacologic inhibition of PI3K-Akt-mTOR-S6K1 signaling completely suppressed 15(S)-HETE-induced in vivo angiogenesis. Consistent with these observations, adenoviral-mediated expression of dominant-negative Akt also blocked 15(S)-HETE-induced HDMVEC tube formation and migration and in vivo angiogenesis. Together, these results show for the first time that 15(S)-HETE stimulates angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call