Abstract

Adsorption and activation of dinitrogen (N2) is an indispensable process in nitrogen fixation. Metal nitride species continue to attract attention as a promising catalyst for ammonia synthesis. However, the detailed mechanisms at a molecular level between reactive nitride species and N2 remain unclear at elevated temperature, which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system. Herein, the 14N/15N isotopic exchange in the reaction between tantalum nitride cluster anions Ta314N3− and 15N2 leading to the regeneration of 14N2/14N15N was observed at elevated temperature (393−593 K) using mass spectrometry. With the aid of theoretical calculations, the exchange mechanism and the effect of temperature to promote the dissociation of N2 on Ta3N3− were elucidated. A comparison experiment for Ta314N4−/15N2 couple indicated that only desorption of 15N2 from Ta314N415N2− took place at elevated temperature. The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species. This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call