Abstract

As a continuation of our program to study structure-activity relationships of opiate peptides, we report the syntheses and biological activities of a series of 14-membered cyclic dermorphin analogues closely related to enkephalin analogue Tyr-c[D-A2bu-Gly-Phe-Leu] incorporating a phenylalanine at the third position in place of glycine. In addition to two parent dermorphin analogues Tyr-c[D-A2bu-Phe-Phe-(L and D)-Leu], four stereoisomeric retro-inverso modified analogues Tyr-c[D-A2bu-Phe-gPhe-(S and R)-mLeu] with a reversed amide bond between residues four and five, and Tyr-c[D-Glu-Phe-gPhe-(L and D)-rLeu] with two reversed amide bonds between residues four and five, and between residue five and the side chain of residue two have been synthesized. The results from the guinea pig ileum (GPI) and mouse vas deferens (MVD) assays show that all analogues are superactive at either one or both opiate receptors and in general display higher activities as compared to the corresponding enkephalin analogues with a glycine at the third position. Results from the in vitro biological assays and conformational analysis using 1H-NMR spectroscopy (adjoining paper) will provide useful information to understand the role of the Phe3 aromatic side chain in dermorphin, and that of the Phe4 aromatic side chain in enkephalin, on opiate activity since these cyclic dermorphin analogues contain two Phe residues at both the third and fourth positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.