Abstract
Previous attempts to account for the labelling in vivo of liver metabolites associated with the citrate cycle and gluconeogenesis have foundered because proper allowance was not made for the heterogeneity of the liver. In the basal state (anaesthetized after 24h starvation) this heterogeneity is minimal, and we show that labelling by [14C]bicarbonate can be interpreted unambiguously. [14C]Bicarbonate was infused to an isotopic steady state, and measurements were made of specific radioactivities of blood bicarbonate, alanine, glycerol and lactate, of liver alanine and lactate, and of individual carbon atoms in blood glucose and liver aspartate, citrate and malate. (Existing methods for several of these measurements were extensively modified.) The results were combined with published rates of gluconeogenesis, uptake of gluconeogenic precursors by the liver, and citrate-cycle flux, all measured under similar conditions, and with estimates of other rates made from published data. To interpret the results, three ancillary measurements were made: the rate of CO2 exchange by phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) under conditions that simulated those in vivo; the 14C isotope effect in the pyruvate carboxylase (EC 6.4.1.1) reaction (14C/12C = 0.992 +/- 0.008; S.E.M., n = 8); the ratio of labelling by [2-14C]- to that by [1-14C]-pyruvate of liver glutamate 1.5 min after injection. This ratio, 3.38, is a measure of the disequilibrium in the mitochondria between malate and oxaloacetate. The data were analysed with due regard to experimental variance, uncertainties in values of fluxes measured in vitro, hepatic heterogeneity and renal glucose output. The following conclusions were reached. The results could not be explained if CO2 fixation was confined to pyruvate carboxylase and there was only one, well-mixed, pool of oxaloacetate in the mitochondria. Addition of the other carboxylation reactions, those of PEPCK, isocitrate dehydrogenase (EC 1.1.1.42) and malic enzyme (EC 1.1.1.40), was not enough. Incomplete mixing of mitochondrial oxaloacetate had to be assumed, i.e. that there was metabolic channelling of oxaloacetate formed from pyruvate towards gluconeogenesis. There was some evidence that malate exchange across the mitochondrial membrane might also be channelled, with incomplete mixing with that in the citrate cycle. Calculated rates of exchange of CO2 by PEPCK were in agreement with those measured in vitro, with little or no activation by Fe2+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.