Abstract

Ilex crenata Thunb. `Rotundifolia' split-root plants were grown for 3 weeks with root zones at 30/30, 30/34, 30/38, 30/42, 34/34, 38/38, and 42/42C. The 38C root-zone treatment was the upper threshold for several growth and physiological characteristics. A portion of the root system grown at or near the optimum temperature could compensate, in terms of shoot growth, for part of the root system exposed to supraoptimal root-zone temperatures up to 38C. Higher root-zone temperatures did not affect short-term photosynthetic rates or root : shoot ratios, but altered photosynthate partitioning to various stem and root sinks. Although no differences were found for total 14C partitioned to the roots, partitioning of 14C into soluble and insoluble fractions and the magnitude of root respiration and exudation were influenced by treatment. Heating half of a root system at 38C increased the amount of 14C respired from the heated side and increased the total CO2respired from the nonheated (30C) half. Exposure of both root halves to 42C resulted in membrane damage that increased the loss of 14C-labeled photosynthates through leakage into the medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.