Abstract
Abstract Animal life essentially is a set of gene expression processes. Thorough understanding of these processes driven by dietary nutrients and other environmental factors can be regarded as a bottom line of modern advanced animal nutrition research for improving animal growth, development, health, production, and reproduction performance. Nutrigenomics, a genome-wide approach using the knowledge and techniques obtained from the disciplines of genomics (including transcriptomics) and molecular biology, is to study the effects of dietary nutrients on cellular gene expression, cellular metabolic responses and, ultimately, the phenotypic changes of a living organism. Transcriptomics can be applied to investigate animal tissue transcriptome at a defined physiological or nutritional state, which provides a holistic view of the intracellular expression of RNA, especially mRNA. As a novel, promising transcriptomics approach, RNA sequencing (RNA-Seq) technology can monitor all-gene expressions simultaneously in response to dietary intervention. The principle and history of RNA-Seq technology will be briefly reviewed, and the three principal steps of this methodology, including the laboratory analysis of tissue samples, the bioinformatics analysis of the generated sequence data, and the subsequent biological interpretation of the data, will be described. The application of RNA-Seq technology in different areas of animal nutrition research, which include maternal nutrition, feeding strategy and gut microbiota, will be summarized. Lastly, the application of RNA-Seq technology in swine science and nutrition research will also be discussed. In short, to further improve animal feeding or production efficiency, RNA-Seq technology holds a great potential to be employed to explore the new insights into better understanding of nutrient-gene interactions in agricultural animals, and it is expected that the application of this cutting-edge technology in animal nutrition research will continue to grow in the foreseeable future. This research was supported in part by a USDA-NIFA Multistate Project (No. 1007691).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.