Abstract

A pulsed microwave spectrometer operating in the vicinity of 140 GHz for the detection of rotational transitions in gaseous molecules is described. The spectrometer incorporates a tunable Fabry–Perot cavity and a subharmonically pumped superheterodyne receiver for the detection of the molecular emission signals. A 70-GHz source supplying a high-efficiency frequency doubler which is pulse modulated at 30 MHz produces sidebands of sufficient power at 140 GHz to excite the molecules. The cavity is tuned to one of the modulation sidebands. The operation of the spectrometer is illustrated by the detection of emission signals from the 6(2, 4)–6(1, 5) transition of SO2 gas. The generation of the electric dipole analog of nuclear-magnetic-resonance (NMR) ‘‘spin-echo’’ signals by a π/2−π pulse sequence is also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.