Abstract

Traditional fertilization management can damage soil structure and lead to severe soil erosion. The practice of crop straw returning to the field reduces the negative impact of straw burning and improves soil quality. We investigated the effects of these agricultural practices on soil organic carbon components, enzyme activities, and soil microorganisms over 14 years of field experiments. Specifically, we studied four management strategies: no fertilizer or crop straw returning (CK), traditional chemical fertilization (NPK), crop straw returning (S), and crop straw returning with chemical fertilizer (NPKS). We found NPKS treatments significantly (P < 0.05) increased the dissolved organic carbon (DOC), microbial biomass carbon (MBC), particulate organic carbon (POC) and readily oxidized organic carbon (ROC) concentrations by 79.32 %, 82.16 %, 92.46 %, and 104.32 % relative to CK. Furthermore, under NPKS, the activities of soil enzymes related C, N, and P (α-glucosidase (αG), β-glucosidase (βG), cellulase (CBH), xylanase (βX), acetyl β-glucosaminidase (NAG), leucine aminopeptidase (LAP), and acid phosphate (AP)) were increased by 54.66 %, 113.26 %, 76.73 %, 52.41 %, 45.74 %, 56.69 %, and 68.92 % relative to CK, respectively. Redundancy analysis and structural equation modelling showed that straw returning had positive effects on soil microbial community diversity and richness, and also improved microbial activity which is favorable in the degradation of soil carbon. Furthermore, we found that soil fungi were more sensitive than bacteria to changes in soil carbon composition and enzyme activities following straw returning. These results suggest that straw returning combined with chemical fertilizer can be an effective strategy to improve soil labile organic carbon components, enzyme activities, and ecological function of microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call