Abstract

We have presented an empirical method that can be used to predict the binding energetics for protein-protein or protein-peptide interactions from three-dimensional structures. The approach differs from other empirical methods in yielding a thermodynamic description of the binding process, including delta Cp, delta H degree, and delta S degree, rather than predicting delta G degree alone. These thermodynamic terms can provide a wealth of detail about the nature of the interaction, and, if sufficient experimental data are available for comparison, a greater assessment of the accuracy of the calculations. A recurring theme throughout this article is the need for more complete thermodynamic and structural characterizations of protein-ligand interactions. This includes not only characterization of the binding delta H degree, delta S degree, and delta Cp, but a thorough investigation into equilibria linked to binding, such as protonation, ion binding, and conformational changes. Sufficient data will allow parameterization on binding data rather than protein unfolding data. Further inclusion of information obtained from unfolding studies is not likely to generate significant improvement in the accuracy of the calculations. As additional binding data become available, the parameterization can be further extended to include relationships derived from analyses of these data. Not only will this increase accuracy and thus confidence, but allow extension of the method of additional types of interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.