Abstract

The efficient synthesis of tetrapeptide 5 containing, in alternation, cyclobutane and beta-alanine residues is described. NMR experiments both at low temperature in CDCl(3) and at 298 K in DMSO-d(6) solutions show the contribution of a strong hydrogen bond in the folded major conformation of 5. Temperature coefficients and diffusion times point out a hydrogen bond involving the NH proton from the cyclobutane residue 1 whereas NOEs manifest the high rigidity of the central fragment of the molecule and are compatible with a 14-membered macrocycle. Theoretical calculations predict a most stable folded conformation corresponding to a 14-helix stabilized by a hydrogen bond between NH(10) in the first residue and OC(25) in the third residue. This structure remains unaltered during the molecular dynamics simulation at 298 K in chloroform. All these results provide evidence for a 14-helical folding and reveal the ability of cis-2-aminocyclobutane carboxylic acid residues to promote folded conformations when incorporated into beta-peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.